

HI-8592, HI-8593, HI-8594

October, 2010

Single-Rail ARINC 429 Differential Line Driver

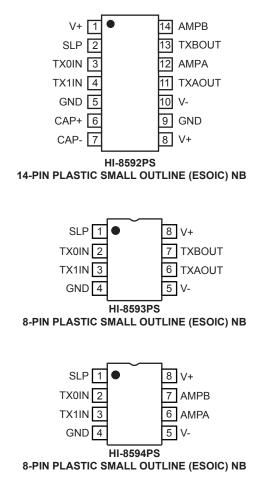
GENERAL DESCRIPTION

The HI-8592 bus interface product is a silicon gate CMOS device designed as a line driver in accordance with the ARINC 429 bus specifications. The part includes a negative voltage converter allowing it to operate from a single +5V supply using only two external capacitors. The part also features high-impedance outputs (tri-state) when both data inputs are taken high, allowing multiple line drivers to be connected to a common bus.

The HI-8593 and HI-8594 are reduced pin count versions of HI-8592 which do not incorporate the negative voltage converter. These devices are compatible with Holt's existing HI-8570 and HI-8571 respectively, with the added advantage of the tri-state outputs. For even smaller board footprint, versions are also available in leadless, surface mount QFN-style packages.

Logic inputs feature built-in 2,000V minimum ESD input protection as well as 5V or 3.3V logic level compatibility.

Products with 5 Ohm or 37.5 Ohm resistors in series with each ARINC output are available to allow the use of external resistors for lightning protection.


The HI-859x series of line drivers are intended for use where logic signals must be converted to ARINC 429 levels such as when using an FPGA or the HI-3584 ARINC 429 Serial Transmitter/Dual Receiver.

The family of parts are available in Industrial -40° C to $+85^{\circ}$ C, or Extended, -55° C to $+125^{\circ}$ C temperature ranges. Optional burn-in is available on the extended temperature range.

FEATURES

- Single +5V supply
- Negative voltage generated on-chip (HI-8592)
- · Digitally selectable rise and fall times
- Tri-state Outputs
- Plastic 8 & 14-pin thermally enhanced SOIC packages available
- 5 Ohm or 37.5 Ohm output resistance
- Industrial and Extended temperature ranges
- Burn-in available

PIN CONFIGURATION (TOP VIEW)

(See page 9 for additional package pin configurations)

Table 1. Function Table

TX1IN	TX0IN	SLP	TXAOUT	TXBOUT	SLOPE
0	0	Х	0V	0V	N/A
0	1	0	-5V	5V	10µs
0	1	1	-5V	5V	1.5µs
1	0	0	5V	-5V	10µs
1	0	1	5V	-5V	1.5µs
1	1	Х	Hi-Z	Hi-Z	N/A

BLOCK DIAGRAM

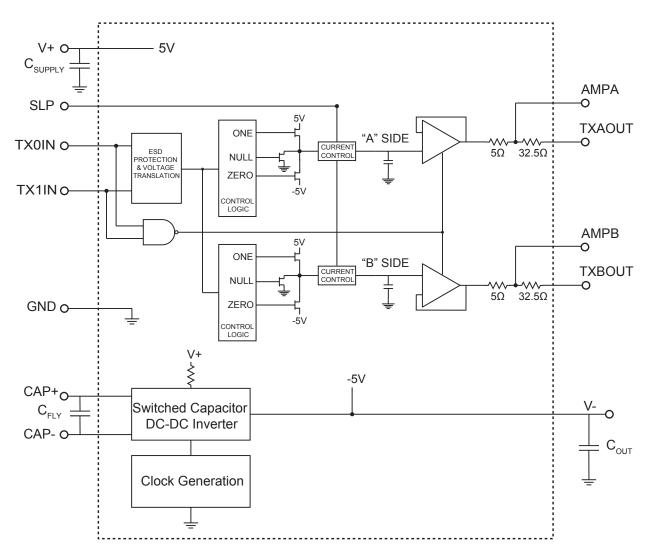


Figure 1. HI-8592 Block Diagram

PIN DESCRIPTIONS

Pin	Function	Description
V+	POWER	+5V power supply
SLP	INPUT	Output slew rate control. High selects ARINC 429 high-speed. Low selects ARINC 429 low-speed.
TX0IN	INPUT	Data input zero
TX1IN	INPUT	Data input one
GND	POWER	Ground supply
CAP+	ANALOG	Positive connection for external capacitor, C _{FLY}
CAP-	ANALOG	Negative connection for external capacitor, C _{FLY}
V-	POWER	-5V supply, may be connected to supply or used with on-chip negative supply converter
TXAOUT	OUTPUT	ARINC high output with 37.5 Ohms series resistance
AMPA	OUTPUT	ARINC high output with 5 Ohms series resistance
TXBOUT	OUTPUT	ARINC low output with 37.5 Ohms series resistance
AMPB	OUTPUT	ARINC low output with 5 Ohms series resistance

Table 2. Pin Descriptions

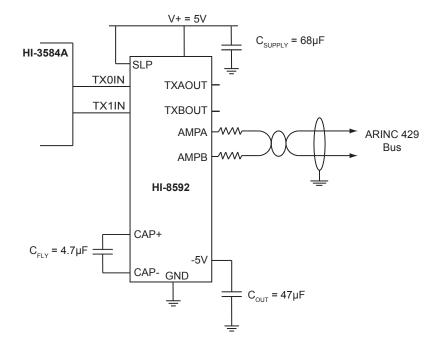


Figure 2. Application Example

HOLT INTEGRATED CIRCUITS 3

FUNCTIONAL DESCRIPTION

Figure 1 is a block diagram of the line driver. The chip requires a positive 5V supply at V+. The negative 5V supply at V- may be from an external source or may be provided using the on-chip negative rail generator by connecting the two external capacitors, C_{FLY} and C_{OUT} .

Currents for slope control are set by on-chip resistors.

The TX0IN and TX1IN inputs receive logic signals from a control transmitter chip such as the HI-3584. TX-AOUT and TXBOUT hold each side of the ARINC bus at Ground until one of the inputs becomes a One. If for example TX1IN goes high, a charging path is enabled to 5V on an "A" side internal capacitor while the "B" side is enabled to -5V. The charging current is selected by the SLP pin. If the SLP pin is high, the capacitor is nominally charged from 10% to 90% in 1.5 μ s. If SLP is low, the rise and fall times are 10 μ s.

The reduced pin-count HI-8593 and HI-8594 require an external -5V supply.

A unity gain buffer receives the internally generated

ABSOLUTE MAXIMUM RATINGS

Supply Voltages
V+ +7V
V7V
DC Current per input pin+10mA
Power Dissipation at 25°C
plastic SOIC 1.0W, derate 10mW/°C
ceramic DIP 0.5W, derate 7mW/°C
Solder Temperature 275°C for 10sec
Storage Temperature65°C to +150°C

Note: The HI-8592 family of drivers are available in small-footprint, thermally enhanced SOIC and QFN (chip-scale) packages. These packages include a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board for optimum thermal dissipation.

The heat sink is electrically isolated from the chip and can be soldered to any ground or power plane.

slopes and differentially drives the ARINC line. Current is limited by the series output resistors at each pin. There are no fuses at the outputs of the HI-859x family.

The HI-8593 has 37.5 ohms in series with each TXOUT output and the HI-8594 has 5 ohms in series with each AMP output. The AMP outputs are for applications where external series resistance is required, typically for lightning protection devices. Both output types are available on the HI-8592. Holt Application Note AN-300 describes suitable lightning protection schemes.

All devices feature tri-stateable outputs to allow multiple line drivers to be connected to the same ARINC 429 bus. Setting TX1IN and TX0IN both to a logic "1" puts the outputs in the high-impedance state.

The HI-8592 family of line drivers are built using highspeed CMOS technology. Care should be taken to ensure the V+ and V- supplies are locally decoupled to reduce noise. An application example is shown in Figure 2.

RECOMMENDED OPERATING CONDITIONS

Supply Voltages	
V+	+4.85V to +5.25V
V	-5.25V to -4.85V
Temperature Range	
Industrial Screening	40°C to +85°C
Hi-Temp Screening	55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

Table 3. DC Electrical Characteristics

V+ = +5V, V- = -5V (HI-8593/4 only), T_A = Operating Temperature Range (unless otherwise stated)

Parameters	Symbol	Test Conditions	Min	Тур	Мах	Units
Input Voltage (TX1IN, TX0IN, SLP)						
High	V _{IH}		2.1	-	V+	V
Low	V _{IL}		-	-	0.5	V
Input Current (TX1IN, TX0IN, SLP)						
Source	I _{IH}	$V_{IN} = 0V$	-	-	0.1	μA
Sink	I _{IL}	V _{IN} = 5V	-	-	0.1	μA
ARINC Output Voltage (Differential)						
one	V _{DIFF1}	no load; TXAOUT - TXBOUT	9	10	11	V
zero	V _{DIFF0}	no load; TXAOUT - TXBOUT	-11	-10	-9	V
null	V	no load; TXAOUT - TXBOUT	-0.5	0	0.5	V
ARINC Output Voltage (Ref. to GND)						
one or zero	V _{DOUT}	no load & magnitude at pin	4.5	5.0	5.5	V
null	V _{NOUT}	no load	-0.25	0	0.25	V
Operating Supply Current		SLP = V+				
V+	I _{DD}	TX1IN & TX0IN = 0V: no load	-	22	28	mA
GND		TX1IN & TX0IN = 0V: no load	-	10	16	mA
V-	I _{EE}	TX1IN & TX0IN = 0V: no load	-16	-10	-	mA
ARINC Output Impedance	Z _{OUT}					
TXOUT pins				37.5		Ohms
AMP pins				5		Ohms
ARINC Output Tri-State Current	I _{oz}	V- < V_{OUT} < V+, T_A = 125°C TX0IN = TX1IN = V+	-1.0	0	+1.0	μA

Table 4. Converter Characteristics

Parameters	Symbol	Test Conditions	Min	Тур	Max	Units
Start-up transient (V+, V-)	t _{start}		-	-	10	ms
Operating Switching Frequency	f _{sw}		425	550	670	kHz
	C _{FLY}	C _{OUT} / C _{FLY} >= 10	2.2	4.7	-	μF
Recommended Capacitors	C _{OUT}		22	47	-	μF
	C	$C_{SUPPLY} \ge C_{OUT}$ (connect from V+ to GND)	47	68	-	μF

Table 5. AC Electrical Characteristics

V+ = +5V, V- = -5V (HI-8593/4 only), T_A = Operating Temperature Range (unless otherwise stated)

Parameters	Symbol	Test Conditions	Min	Тур	Мах	Units
Line Driver Propogation Delay		defined in Figure 2, no load				
Output high to low	t _{phlx}		-	500	-	ns
Output low to high	t _{plhx}		-	500	-	ns
Line Driver Transition Times						
High Speed		SLP = V+				
Output high to low	t _{fx}	pin 1 = logic 1	1.0	1.5	2.0	μs
Output low to high	t _{rx}	pin 1 = logic 1	1.0	1.5	2.0	μs
Low Speed		SLP = V+				
Output high to low	t _{fx}	pin 1 = logic 0	5.0	10.0	15.0	μs
Output low to high	t _{rx}	pin 1 = logic 0	5.0	10.0	15.0	μs
Input Capacitance (Logic)1	C _{IN}		-	-	10	pF
Output Capacitance (Tri-state) ¹	C _{OUT}	TX0IN = TX1IN = V+	-	-	1.5	pF

Notes:

1. Guaranteed but not tested

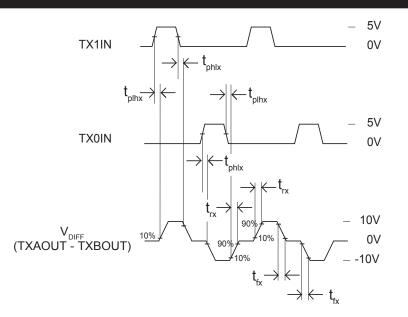


Figure 3. Line Driver Timing

PACKAGE THERMAL CHARACTERISTICS

Maximum ARINC LOAD

Deckere Style1	ARINC 429 Supply Current (mA) ²			Junction Temp, T _j (°C)			
Package Style ¹	Data Rate	T _A = 25°C	T _A = 85°C	T _A = 125°C	T _A = 25°C	T _A = 85°C	T _A = 125°C
14-Lead Plastic	Low Speed ³	30	31	32	33	93	134
ESOIC⁵	High Speed⁴	36	36	37	35	95	135

TXAOUT and TXBOUT Shorted to Ground^{6,7,8}

Deckage Style1	ARINC 429	Supj	oly Current ((mA)²	Junction Temp, T _j (°C)			
Package Style ¹	Data Rate	T _A = 25°C	T _A = 85°C	T _A = 125°C	T _A = 25°C	T _A = 85°C	T _A = 125°C	
14-Lead Plastic	Low Speed ³	89	82	77	53	111	149	
ESOIC⁵	High Speed⁴	87	81	77	52	111	149	

Notes:

1. All data taken in still air.

- 2. At 100% duty cycle, 5V power supplies.
- 3. Low Speed: Data Rate = 12.5 Kbps, Load: R = 400 Ohms, C = 30 nF.
- 4. High Speed: Data Rate = 100 Kbps, Load: R = 400 Ohms, C = 10 nF. Data not presented for C = 30 nF as this is considered unrealistic for high speed operation.
- 5. 14 Lead Plastic ESOIC (Thermally enhanced SOIC with built in heat sink). Heat sink not soldered.
- 6. Similar results would be obtained with TXAOUT shorted to TXBOUT.
- 7. For applications requiring survival with continuous short circuit, operation above Tj = 175°C is not recommended.
- 8. Data will vary depending on air flow and the method of heat sinking employed.

ORDERING INFORMATION

HI - 8592<u>xx x x</u>

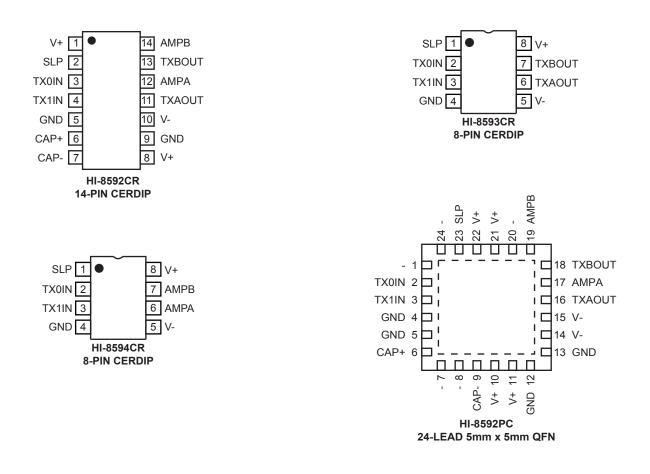
$\overline{ }$				
	PART NUMBER	LEAD FINISH		
	Blank	Tin / Lead (Sn / Pb) Solder	
	F	100% Matte Tin (Pb-free, RoHS compliant)		
		* T		
	PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
	I	-40°C to +85°C	I	No
	Т	-55°C to +125°C	Т	No
	М	-55°C to +125°C	М	Yes
		^	^	
	PART NUMBER	PACKAGE DESCRIPTION		
	PS	14 PIN PLASTIC SMALL OUT	INE - NB	ESOIC (14H
	PC	24 PIN PLASTIC QFN (24PCS)	

14 PIN CERDIP (14D). NOTE: Not Available Pb-Free

HI - <u>859x xx x x</u>

CR

	PART NUMBER	LEAD FINISH			
	Blank	Tin / Lead (Sn / Pb) Solder		
	F	100% Matte Tin (Pb-free, F	100% Matte Tin (Pb-free, RoHS compliant)		
	PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	
	I	-40°C to +85°C	I	No	
	Т	-55°C to +125°C	Т	No	
	М	-55°C to +125°C	М	Yes	
	PART NUMBER	PACKAGE DESCRIPTION			
L	PART NUMBER PS	PACKAGE DESCRIPTION 8 PIN PLASTIC SMALL OUTLI	NE - NB E	SOIC (8HNE	
	PS	8 PIN PLASTIC SMALL OUTLI			
	PS	8 PIN PLASTIC SMALL OUTLI			
	PS CR	8 PIN PLASTIC SMALL OUTLI 8 PIN CERDIP (8D). NOTE: No			

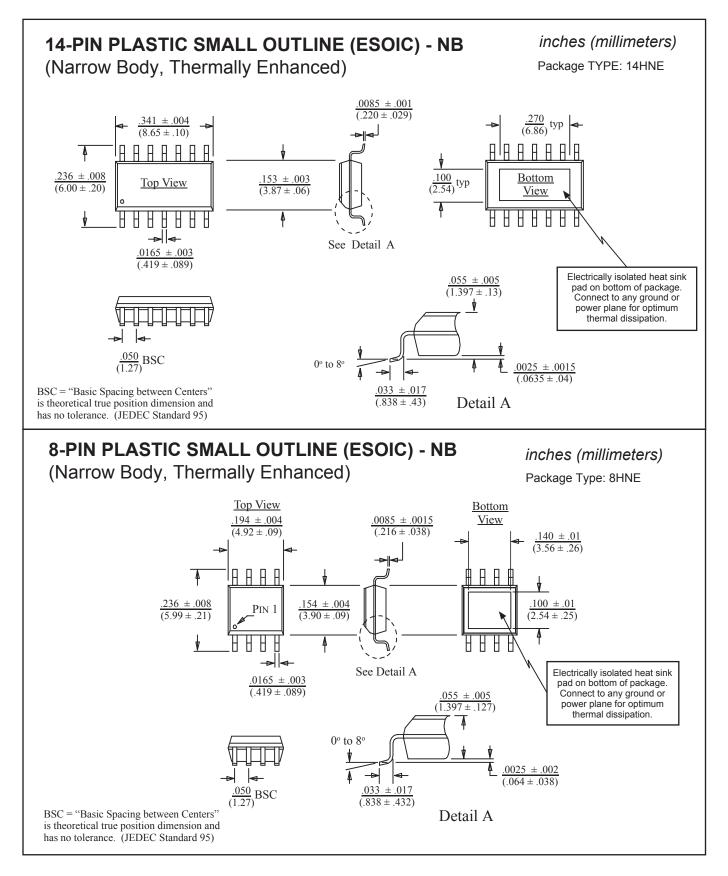

Legend: ESOIC - Thermally end NB - Narrow Body

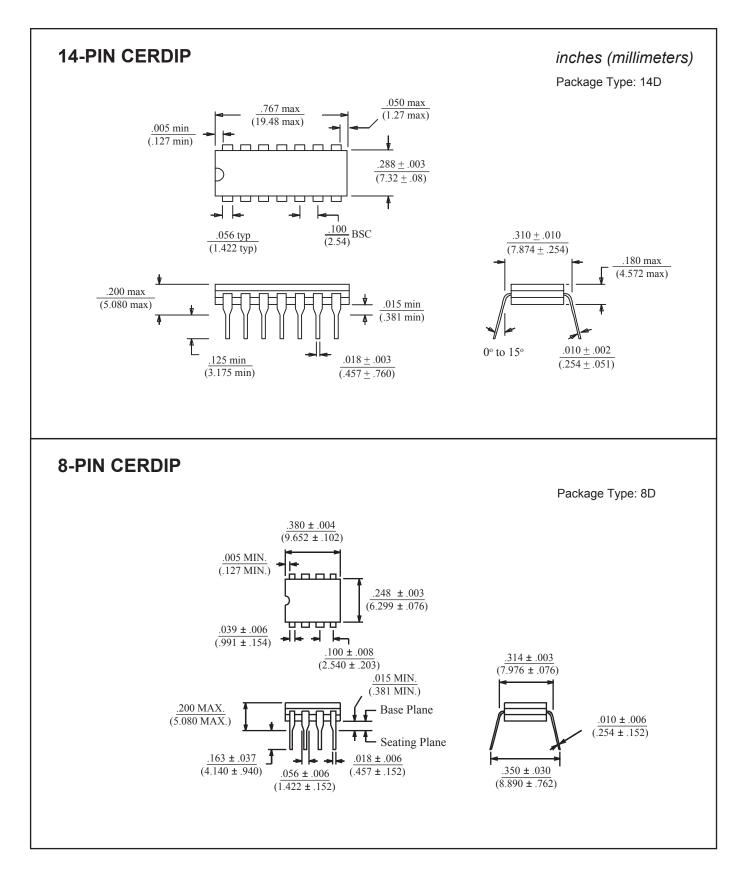
Thermally enhanced Small Outline Package (SOIC with built-in heat sink)

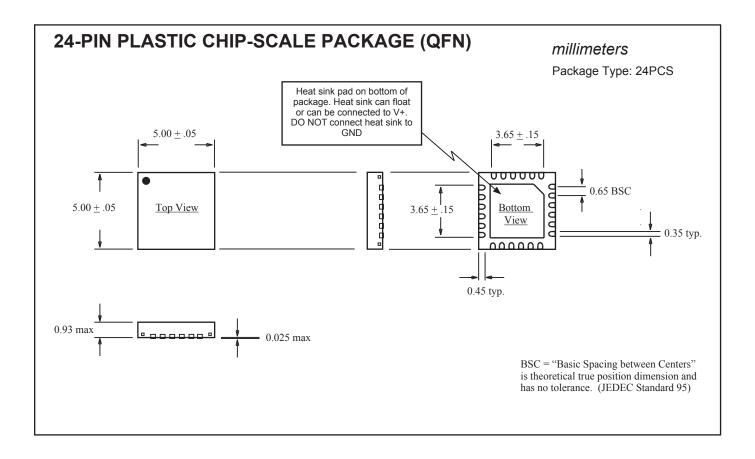
HOLT INTEGRATED CIRCUITS

ADDITIONAL PIN CONFIGURATIONS

NOTE: All power and ground pins must be connected.




HI-8592, HI-8593, HI-8594


REVISION HISTORY

Revision		Date	Description of Change
DS8592,	Rev. NEW	6/21/10	Initial Release
	Rev. A	7/1/10	Corrected typo in features (no "fixed" rise and fall time)
	Rev. B	10/28/10	Rev. A had incorrect package drawing (SOIC-8). Replaced with correct ESOIC-8.

PACKAGE DIMENSIONS

